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Abstract--Experiments have been performed for vertical two-phase flow of air-water mixtures through 
several noncircular channels. Frictional pressure drops are discussed in terms of the correlation method for 
single.phase turbulent flow developed first in this study. Results for rising velocity of large gas bubble and 
mean void fraction are also discussed. Flow pattern boundaries are presented and compared with each 
other as to channel geometry. 

INTRODUCTION 

Noncircular channels through which two-phase gas-liquid mixtures flow are frequently used in 
engineering applications. In a cross section of a tube bundle or a rod bundle, for instance, 
several noncircular ones (subchannels) are present. However, most studies on two-phase flow 
to date are concerned with circular pipes and little is known about the flow characteristics 
in noncircular passages. It is desirable to obtain systematic knowledge of the flow mechanics in 
noncircular channels, not only for better understanding of the inherent flow behavior but also 
to make use of the information compiled from the investigation for round tubes so far made. 

Data on two-phase pressure drop in noncircular channels are practically nonexistent. There 
is no guarantee that the correlation for circular pipes will continue to apply to noncircular ones. 
Therefore, an attention should be directed toward the pressure drop problem. In discussing 
two-phase frictional pressure drop in any noncircular channel, it is of importance to know a 
reasonable method for predicting that of single-phase flow in the channel considered. A 
literature survey concerning fully developed singie-phase flows in straight noncircular passages 
reveals that knowledge of the laminar flow is satisfactory at least in engineering applications 
(Shah & London 1978), while that of the turbulent flow is still far from adequate to the need for 
various shapes encountered in practical systems. There is the well-known hydraulic diameter 
concept in this area; i.e. the pressure drop correlation which is valid for circular pipes may be 
applied to noncircular channels if the hydraulic diameter is substituted for the characteristic 
length in the friction factor and the Reynolds number (Nikuradse 1930). In recent years, 
however, there have been many experimental evidences that do not support this concept; for 
instance, Carlson & Irvine (1961), Gunn & Darling (1963). There is still a need to obtain the 
rational prediction method for the frictional pressure drop in other than circular pipes, 
particularly in the area of nuclear reactor engineering (Rehme 1973; Mal~k et al. 1975). 
Realizing these aspects, this investigation was then started with the consideration of frictional 
pressure drop for single-phase flow and followed by that for two-phase flow. The results of this 
investigation are reported in the present paper. 

It is to be expected that the velocity of gas bubble in a two-phase flow will be influenced by 
flow behavior of the liquid phase that is probably accounted for by the channel shape. 
Measurements of the rising velocity of gas bubble were made in several noncircular channels: 
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rectangular, isosceles-triangular and concentric annular. The average void fraction was measured 
at the same time. The results are presented and discussed in this paper. 

Information as to the flow pattern transition was also obtained in this investigation. 
Comparisons are made among such different shaped channels on the transitions of bubble-slug 
flow and slug-annular flow. 

EXPERIMENT 

Measurements of pressure drop, mean void fraction, cross-sectional distribution of void 
fraction, rising velocity of gas bubbles and flow pattern were performed for two-phase air-water 
flow in seven vertical channels. The pressure drop for single-phase water flows was also 
measured. Four channels were rectangular of different size, and the others were an isosceles- 
triangular, a concentric annular and a circular. Their dimension, cross-sectional area and hydraulic 
diameter are listed in table 1. 

The circular pipe of 26 mm i.d. was served as a standard of comparison among the 
experimental data, for the fact that, in literature, there has been a great deal of information on 
two-phase flow obtained particularly in about one inch circular pipes. The cross-sectional area 
of both the isoseles-triangular and annular channels was chosen to be approximately equal to 
that of the circular one. The triangular one had an apex angle of 20 degree and a height of 
55 mm, while the annular one consisted of a 30 ram i.d. tube and a rod of 15 mm dia. The three 
rectangular channels had short sides of 17, 10 and 7 mm respectively with equal long sides of 
50 mm. The cross section of the remainder was 7 x 20.6 mm having the same aspect ratio to the 
17 x 50 mm one (1 : 2.94). As a whole, the hydraulic diameter of the seven channels ranged from 
10.4 to 26ram; that of the circular and the 17 x S0mm rectangular ones and that of the 
triangular and the 10 x 50 mm rectangular ones were quite similar to each other, respectively. 

A sketch of the essential part of the test rig is shown in figure I. The test sections were made 
of acrylic resin plates or tubes with a smooth wall surface. After leaving a calibrated orifice, 
water flowed into a test section at the bottom end, then reached a two-phase mixer. Following a 
rotameter, air was injected into a water stream through the mixer, in which there were a 
number of holes (distributed by 11-holes/cm 2 of the cross section) drilled on the periphery of 
the channel wall. The diameter of these air holes was either 0.3 or 2.0 mm depending on the 
magnitude of air flow rate. Then, two-phase mixture flowed upward in an entrance section of 
length L2 and passed through a measuring section of LI, in which the pressure drop, the mean 
void fraction, the cross-sectional distribution of void fraction and the rising velocity of gas 
bubbles were measured. After leaving the measuring section, the mixture passed through an 
exhaust section of L3, and finally discharged into a separator. Separated air then issued into the 
atmosphere, while the drainage was led to a weighing tank to check the flow rate. Exit water 
temperature was read from a mercury-in-glass thermometer placed in the tank. This tem- 
perature was used to evaluate physical properties of air as well as water. The values of LI, L: 
and L3 of each channel are shown in table 1. 

Table 1. Dimensions of test sections 

shape dimension area hydraulic dia. length 

mm A nln 2 A/A ° D h mm Dh/D ° L 1 m L 2 m L 3 m 

i7×50 850 1.60 25.4 0.98 i.I 2.4 1.2 

10x50 500 0.94 16.7 0.64 I.i 1.8 1.2 C-7 
7x50 350 0.66 12.3 0.47 I.i 1.5 0.9 

7x20.6 144 0.27 10.4 0.40 I.I 1.5 0.9 

<~ 20°,h=55 533 1.01 16.3 0.63 I.i 2.4 1.2 

~15/~30 530 1.00 15.0 0.58 1.3 1.5 0.8 

O ~26 531 1 26.0 1 1.7 3.2 1.2 
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Figure I. Schematic sketch of an experimental apparatus. 

Mean void fraction was obtained by the well-known quick-closing valve technique; the 
volume of water, trapped by the two isolation cocks arranged at both ends of the measuring 
section, was measured. Special care was taken in the fabrication of a cylindrical rotation plug 
in such a cock; i.e. the flow passage was grooved perpendicularly to the plug and finished so as 
to be flush with the passage of channel just before and behind it. For the annular channel, 
a piece of 15ram dia. core rod was concentrically held by pins in the 30ram dia. circular 
passage. To obtain accurate void fraction data, especially in a case of a slug flow, twenty or 
more operations were performed. 

Pressure gradient was obtained from the static pressure difference Ap between two taps 
placed in the measuring section at an interval of Ax = 0.75 ~ 1.0 m. This pressure differential 
was measured by means of an inverted water/air manometer and a traveling microscope. A 
capillary vinyl tube of 1.4 mm i.d. of reasonable length was laid within the pressure leads, 
eliminating undesirable fluctuations of meniscus in the manometer. Frictional pressure gradient 
in two-phase flow was determined from the static pressure gradient AplAx by means of the 
following equation, assuming that the accelerational pressure gradient and the weight of air are 
negligible: 

Ap/ An 
= ~ -  pLg(1 - a )  

Ax 
[1] 

where pL, g and a are the liquid density, the gravitational acceleration and the mean void 
fraction respectively. 

In the annular channel, the core rod was concentrically held by the three 2 mm o.d. radial 
pin spacers, arranged every 0.5 m interval along the axis. Then, there were two sets of the 
spacers between the taps, which might be considered as flow obstructions. However, their 
effect on the pressure drop seemed to be small from the experimental facts that in single-phase 
water flow there was no remarkable difference between the pressure gradients with and without 
the spacers. 

Rising velocity of large gas bubbles, a solitary gas bubble as well as successive gas bubbles in 
two-phase slug flow, was measured by a double needle-contact probe of the type commonly 
used in two-phase flow experiments. One of these probes was also used for the measurements 
of cross-sectional distribution of void fraction and for the flow pattern detection. The method for 
the determination of flow pattern will be described in the later chapter. 
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R E S U L T  AND D I S C U S S I O N  

Pressure drop 
This section begins with the treatment of sin#e-phase pressure drop in noncircular chan- 

nels; the relation between friction factor and channel geometry is described for both laminar 
and turbulent flows. There then follows the description of two-phase pressure drop; two-phase 
flow data are correlated in terms of the two-phase frictional multiplier. 

(a) Single-phase ~low. If hydraulic equivalent diameter Dh and corresponding friction factor 
A are introduced, the relation between frictional pressure gradient Apf/Ax and mean velocity 
is written as the conventional Darcy's formula; 

Apt , 1 
AX = a 2 ' [21 

However, as already mentioned in the introduction, it is found experimentally that the friction 
factor vs Reynolds number relationship as it has been proposed for circular channel is not 
necessarily valid for noncircular one, even if Dh alone is substituted for the diameter; Carlson 
& Irvine (1961), Gunn & Darling (1963), AIy et al. (1978). This suggests that the friction factor 
defined by [2] depends also on the channel geometry considered. It may be profitable to obtain a 
correlation between friction factor and channel geometry. 

As for fufly developed laminar flow in a straight channel of constant cross-sectional area, 
the pressure gradient can be calculated by a numerical method. The Navier-Stokes equation for 
fully developed laminar flow in the x-direction under steady state conditions becomes: 

,~2u .a2u l a _ ~  
ax = o  [3] 

where u is velocity in the x-direction, and /~ is dynamic viscosity. If the partial differential 
equation [3] is approximated by a finite difference expression, the flow can be solved numeric- 
ally (e.g. by successive over-relaxation method) for a given pressure gradient under the 
boundary condition of the no-slip at the wall; i.e. the velocity profile is determined. Then, the 
relation between the pressure gradient and the mean velocity is obtained. As expected, 
substitution of these values into [2] results in [4] as the friction factor vs Reynolds number 
relationship in the channel, 

where 

A = Ct Re -l [4] 

Re = p~Dd~. [5] 

The proportionality constant C~ is called geometry factor for laminar flow, because it is 
determined solely by the boundary condition and the geometry of channel cross section (e.g. 
Rehme 1971). G for various channels has already been reported by several investigators, and, 
in particular, the book of Shah & London (1978) contains Ct-tahles for various kinds of channel 
geometry. 

Figure 2 shows the calculated results of the relative geometry factor CJC~o for isosceles- 
triangular, rectangular and cocentric annular channels; relative to that of circular channel 
(Cto = 64). Each curve is drawn against characteristic value for geometry. The CJCm value for 
isosceles-triangular is less than unity and vice versa for concentric annular. The maximum value 
of C/CIo occurs in parallel flat plates. 

For turbulent flow, in general, the friction factor is unable to be determined by purely 
theoretical calculation. Then, experimental data of the friction factor for fully developed 
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turbulent flow in noncircular channels are examined here, and an attempt is made to correlate it 
with the channel geometry. Both figures 3(a) and Co) show the friction factors obtained 
experimentally for concentric annular, rectangular, isosceles-triangular channels with a smooth 
wall plotted against Reynolds numbers defined by [5]; figure (a) is concerned with the present 
experiment, while figure (b) the experiments of other investigators; Quarmby (1967), Hartnett et 
al. (1962) and Carlson & Irvine (1961). Logarithm scale co-ordinates are employed as usual. The 
experimental data are labeled according to the channel shape. Several lines corresponding to 
each channel are also drawn, the theoretical calculations in laminar flow region and the best-fit 
lines to data points in turbulent flow region. In addition, ~ = 64/Re and the Blasius formula are 
plotted respectively for both flow regions by a solid line. 
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Figure 2. Relat ive  laminar g e o m e t r y  factor C/Cto for various channel  geometr ies .  
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Figure 3. Friction factor and Reynolds number relationship for several noncircular smooth test sections: (a) 
present experiment; Co) data of other investigators. 
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It is evident from these figures that in the laminar flow region the agreement between the 
theoretical calculations and data points of Hartnett et aL and Carlson & Irvine is excellent, and 
in the turbulent flow region the data points are found to follow the best-fit lines whose slope is 
equal to -0.25 being parallel to the Blasius formula. As for the available data of noncircular 
channels with a smooth wall other than those quoted in figure 3, the similar trend is seen to hold 
for friction factors in turbulent flow region as held in the figures; Gunn & Darling (1963), Tiedt 
(1968), Lawn & Elliott (1972), Jones, Jr. (1976) and Aly et aL (1978). (Only in a case of annular 
passage it appears that data tend to fall a line having the slope of -0.2 rather than -0.25; for 
instance, the present experiment shown in figure 3(a) and Jonsson & Sparrow (1966). However, 
the slope of -0.25 seems to be suitable also for them within a tolerable difference.) Con- 
sequently, friction factor for any channel with a smooth wall can be correlated by the following 
power-law equation similar to Blasius: 

A = Ct Re-°25. [6] 

The coefficient Ct alone represents channel geometry since the exponent of Reynolds number 
can be fixed to be - 0.25. Then, for convenience sake C will be termed as "geometry factor for 
turbulent flow", analogous to Ct in [4]. 

Such turbulent geometry factors for several noncircular channels has been determined from 
reliable experimental data referred to in the previous paragraph, giving priority to those being in 
the Reynolds number range between 104 and 105, and examined for its dependence on the 
geometry factor for laminar flow. The results are presented in figure 4 with C, ICto as ordinate and 
Q/Cto as abscissa, in which suffix o denotes circular pipe. Three data points plotted at the 
extreme left in the figure correspond to the test channels of Gunn & Darling whose cross 
sections are analogous to ones seen in closely-packed square-array rod bundles. The other data 
points are labeled according to both the investigator and the channel geometry; squares to 
rectangular, triangles to isosceles-triangular and circles to annular channels. The extent of 
Crvalue for each geometry is indicated by a segment parallel to the abscissa. Figure 4 indicates 
that there is such a close relationship between Ct and Ct as shown by the solid curve, which can 
be approximated by 

Ct = ~/ (0"0154 ~o -0"012) + [7] 

Hence, for a given channel geometry Ct can be estimated by [7] once Ct has been obtained 
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from either available data in literature or a numerical calculation. Then, the friction factor for 
turbulent flow can be determined. 

(b) Two-phase flow. An attempt was made to correlate the present data by means of the 
Lockhart & Martinelli parameters (Lockhart & MartineUi 1949) defined by 

\(ap/aX)LI [8] 

X = ¥ \(Ap/lAx)a/ [9] 

where (Apl/Ax) is the frictional pressure gradient for two-phase flow, and (Apt/Ax)o and 
(Api/AX)L are those for the gas and liquid phases respectively flowing alone within the same 
channel. For a noncircular channel, both (ApflAx)z and (Apt/AX)L can be calculated by the 
method proposed in the above section. Figures 5(a)--(c) show the results for the three channels 
except the rectangular channels whose data were quite similar to those demonstrated in figures 
5(a) and (b). Data points are labeled according to superficial liquid velocity h. and also to 
combination of the modes of the superficial liquid and gas flow; e.g. a point (b (~bLn) is the case 
where a flow of the liquid phase alone is turbulent and that of the gas phase alone is laminar. 
Both geometry factors, Ct and Ct, axe shown in each figure. In addition, the Lockhart & 
Martinelli ~bLtt-curve and the Chisholm & Laird correlation (Chisholm & Laird 1958), 

21 1 
= 1 t l 0 ]  

x x 

are represented by the dashed and the solid curve respectively in the figures. 
The data in figure 5(c) only exhibit considerable scatter, which may be due to possible errors 

caused by the measurement of void fraction. However, study of these figures reveals in general 
that it is promising to rely on the Lockhart & Martinelli parameters for correlating the 
experimental results for noncircular channels as well as circular pipes if an appropriate value 
for both (Apt/Ax) o and (APltAX)L can  be obtained, and, furthermore, that it may be preferable 
to use the Chisholm & Laird correlation, [10], for predicting such frictional pressure gradient 
with sufficient accuracy for most practical purposes. 

Rising velocity of large gas bubbles 

(a) A solitary air bubble in moving water streams. In this experiment solitary air bubbles 
ranging (5 -  15) Dh in length were injected into water streams and the rising velocity was 
measured. Each measured velocity was corrected for elongation of the bubble due to change of 
static pressure as it rose. As a result, it was found that the length of an air bubble had little 
effect on the velocity. 

Figure 6 shows the typical results for the triangular and the 7 x 50 mm rectangular channels. 
It is evident from the figure that the rising velocity uo increases linearly with mean water 
velocity 2, and the slope varies with channel geometry; i.e. the slope for the isosceles-triangular 
channel is steeper than that for the rectangular one. The rising velocity of an air bubble in a 
noncircular channel may therefore be correlated by 

ua = Cift + UGo, [11] 

in which Uc, o is the velocity in the stagnant water column. 
It is known that in circular pipes the value of CI is about 1.2 and is close to the ratio of the 

maximum to mean velocity um/d for fully developed turbulent flow; e.g. Nicklin et aL (1962). 



648 M. SADATOMI et aL 

loo I 

10 

100 

10 

100 

10 

0 ~26 0 #~,, 0 j,=0.3m/s 
C t =64 
C, =0.316 (D ~L,~ A 0.5 

'~ 1.0 

o 

Chisholm & Laird 

iLockhart & Mar 
I 

0.1 1 10 100 
X 

(a) 

<3 zo; h=55 0 ~ ~,, 0 JL =0.3 m/s 
C1=51'6  /x 0.5 
Ct=0.291 (D ~L,~ 

1.0 

" ~ .  ~ 2.0 

, 

• Lockhart & Martinell i  / ~ 

.1 1 10 100 
X (hi 

O #15/#30 0 ~ ~,, 0 ./L =0.3,rn/s 
- Ct =95 '4  ZX 0.5 

C t=0.336 • ~L,t 
~7 1.0 

¢ 2.0 

- " " ~  "~'-: Chisholm & L a i r d  

Lockhart & Mar ~°tinelli ~ ~°l "°~,?~..4~k,~ 

O. 1 1 10 100 
X 

(C) 

Figure 5. Two-phase frictional pressure gradient. 

Then, as for the significance of C, there has been an anticipation that C, may be equal to u.,/£~ 
even for noncircular channels. From this interpretation, Griffith (1964) calculated u,J~-value for 
rectangular channel and annuli assuming the power-law velocity profile. However, he was 
unable to compare his calculation directly to the velocity of gas bubble. Thus, conclusive 
interpretation of the coefficient Ct has not yet been obtained. 

In order to examine experimentally such interpretation that (7, = u.,/~, the maximum 
velocity u,. was measured by means of a #tot tube. The results for the six channels are shown 
in figure 7 as a function of Reynolds number. For a Reynolds number greater than 2 x 104, the 
ratio u.Ju is virtually independent of Re. Comparisons of u.J~ at Re = 2 x 104 with C, are 
shown in table 2. The agreement between the two can be considered satisfactory though 
additional experimental information is needed for annular channel. 

(b) A solitary air bubble in a stagnant water column. An experiment for determination of 
Uoo in [11] was run in several channels filled with stagnant water. The results are shown in 



TWO-PHASE FLOW IN VERTICAL NONCIRCULAR CHANNELS 649 

3 

A triangular(20; h = 5 5 ) /  

~ [] rectangular ( T X ~  : 

2 

1 

0 t I i 
1 

fi m/s 

Figure 6. Rising velocity of a sofitary gas bubble in moving water streams. (A20  °, h = 55 and ra 7 × 50.) 

2.0 

1.8 

<m 1.6 

1.4 

1.2 

1 7 × 5 0  

- - . ~  l O X S O  

. . . .  7X50 
: o 

:' C) 
' ,  

1 . 0  t I i I I 

l 2 3 x lO + 
R e = ~DA/v 

Figure 7. Ratio of maximum to mean velocity vs Reynolds number. 

table 3. Also shown in the table are the measurements of Griflith (1964) and the additional data 
of the authors for rectangular channels of 30 × 30 mm and 30 × 120 mm. Since only gravity and 
inertia forces are the dominant parameter in a relatively larger channel filled with water, it is 
expected that UGo can be correlated by the following Froude-number-type expression, 

UGO 
C2 = V(gD) [121 

where D is the characteristic dimension. 
It is known that for a circular pipe C2 = 0.35, Dumitrescu (1943) and Davis & Taylor (1950). 

For a noncircular channel, however, a question has arisen as to the characteristic dimension D. 
Grittith (1964) reports that the large dimension is most important in channels; for instance, the 
shroud dimension in annuli and tube bundles. However, it is felt that the large dimension is not 
decisive because the resulting C2 is still dependent on channel geometry. Then, in the present 
study an equi-periphery diameter D,, which is equivalent to the quotient of the periphery 
divided by +r, was tested as the characteristic dimension. The results, C2 = uc, d ~ ( g D , ) ,  are 
presented in table 3. Almost all data are in the range from 0.31 to 0.36 except for the two cases. 
When a E6tv6s number, pLgD+2/¢, is greater than 70, as is the cases of the present experiment, 
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Table 2. Comparison between C1 

shape 

[---7 

<~ 

@ 

O 

and umla at Re = 2 x 1~ 

dimension 
C 1 Um/~ 

rp/n 

17×50 1.20 1.23 

10×50 1.24 1.23 

7×50 1.16 1.17 

7x20.6 1.21 1.23 

20°,h=55 1.34 1.31 

~15/¢30 1.30 1.15 

¢26 1.25 1.23 

shape 

r '-Ta 

Table 3. Rising velocity of a solitary gas bubble in a stagnant water column 

dimension 

7×20.6 

8.9x37.8 +) 

7x50 

10×50 

30×30 

17x50 

37.6x50.3 +) 

5 1 . 6 x 5 2 . 1  +) 

ii.0x133 +) 

30×120 

De*) *) UGO uGo/g/g~e shape dimension D e uGo 

mm m/s mm mm m/s 

17.6 0.142 0.34 <~ 20",h=55 41.7 0.214 

29.7 0.167 0.31 ~15/~30 45.0 0.211 

36.3 0.228 0.38 #5.9/#50.8 +) 56.7 0.247 

38.2 0.204 0.33 ~ ~12.3/#50.8 +) 63.1 0.272 

38.2 0.207 0.34 ~17.8/#50.8 +) 68.6 0.272 

42.7 0.216 0.33 /o~ ~3.9x7/~50.8 +) 77.8 0.267 

56.0 0.232 0.31 ~ ~6.6x7/~50.8 +) 97.0 0.310 
tube 

66.0 0.254 0.32 bundle #i0x7/~50.8 ÷) 121 0.429 

91.9 0.292 0.31 #26 26.0 0.181 

95.5 0.336 0.35 0 ~50.8 +) 50.8 0.240 

~) equi-periphery diameter; D e=periphery/~ 

+) from the measurements performed by Griffith (1964) 

uGo/g~--~e 

0.33 

0.32 

0.33 

0.35 

0.33 

0.31 

0.32 

0.39 

0.36 

0.34 

White & Beardmore (1962) showed that the effect of both surface tension and viscous forces 
are negligible. Accordingly, it can be concluded that, when the E6tv6s number exceeds 70, [12] is 
applicable to noncircular channels if the equi-periphery diameter D, is substituted for D. 

(c) Successive air bubbles in two-phase slug flow. The results for solitary air bubble 
mentioned in the preceding paragraphs suggest that the rising velocity of two-phase gas bubbles 
in noncircular channels can also be described by the currently used equation of Griflith & 
Wallis (1961) and Nicklin et al. (1962) for circular channel: 

uc = C,(jo + iL) + Uoo [13] 

where lo and JL are the superficial velocities of gas and liquid respectively. Comparisons of the 
rising velocities predicted by [13] with those obtained experimentally are shown in Figs. 8(a) 
and (b), for the isosceles-triangular and the 17x50mm rectangular channels. From such 
comparison, it can be said that the rising velocity of two-phase gas bubble in noncircular 
channels is closely approximated by [13] along with Cl = Um]~ and Uoo = 0.35 ~(gD~). 

However, it should be emphasized that there may be a limit for these equations to be used 
for tube bundles or channels consisting of asymmetry, parallel subchannels. Griflith (1964) 
reports that in tube bundles with relatively larger tubes a marked channeling occurs, which is 
characterized by partition of the passages between tubes into two sorts, ones consisting almost 
entirely of gas and the rest consisting almost entirely of liquid. It may be expected for these 
phenomena to persist particularly in a flow with moderate mean void fraction and phase 
velocities, to occur more easily with an increase of the number of rods and their diameter and 
to cause an increase in bubble rise velocity. Under conditions where such a channeling prevails, 
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Figure 8. Comparison of [13] with experimental data of the velocity of gas bubble in two-phase slug flow. 

the coefficient C, in [11] and [13] will not be consistent with u,.Itt and, in addition, C2 = 
Uool'V'(gD,) will not remain constant to be about 0.35. Regarding the latter C2, inspection of the 
data of Griflith on the tube bundles presented in table 3 suggests that Uc, d~(gD,) slightly 
increases with increasing rod diameter at a fixed shroud diameter even though D, is employed. 

Void fraction 
(a) Mean void fraction. Relation of the mean void fraction, the superficial velocity and the 

gas velocity in a two-phase flow is expressed by 

a = - ~ - .  [141 UG 

If [ 13] is used for uo, the void fraction in slug flow can be calculated. In this study comparisons were 
made between a and the measurements a,~p obtained by a quick-closing valve method. The two 
typical results are presented in figures 9(a) and (b). It can be seen from the figures that, in the range 
of a,xp < 0.8 including not only slug flow but also bubble flow regime of a,~p < 0.25, the data lie 
within a scatter band of - 2 5  to + 5%, irrespective of the channel geometry. The data of other 
channels omitted here also give better results than those of the annular channel, figure 9(b), in 
which the largest discrepancy (-  25%) is observed. Thus, [14] together with [13] is seen to provide a 
good agreement with data of the mean void fraction for both bubble and slug flows in noncircular 
channels. 
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Figure 9. Comparison between experimental and predicted results for mean void fraction. 
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(b) Cross-sectional distribution of void fraction. A needle contact probe with a phase 
detecting electrode tip of 0.3 mm was used to determine the distribution of void fraction for 
typical flow patterns. A couple of results for the isosceles-triangular and the 17 x 50ram 
rectangular channels are presented in figures 10(a)-(d), in an equi-void-contour map form. Figures 
10(a) and (c) are the results for a bubble flow at aex p = 0.15. It is seen from these figures that in a 
bubble flow the local voids due to sliding bubbles (Sato et aL 1976) tend to peak near the walls 
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Figure 10. Equi-void-contour map for the isosceles-triangular and the 17 x 50 rectangular channels. ((a) and 
(c): bubble flow of aexp --- 0.15, (b) and (d): slug flow of aexp-~ 0.64.) 
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and corners, and there is a basin in the central region. Both figures 10Co) and (d) pertain t o  a 
slug flow at acxp- 0.64. The peak value is observed at the same point at which the liquid 
velocity in turbulent flow has its maximum value in the cross section. These figures indicate that 
the gas phase flows in the central core while the liquid occupies the corners. This seems to be a 
variety of channeling phenomena, and thus unequal density and flow field along the periphery 
may result. Although such a phenomenon is outside the scope of this paper, it is felt that the 
understanding of it is one of the most important aspects of two-phase flow in noncircular 
channels. 

Flow pattern transitions 
As a final matter of interest, consideration may be given to the comparison of the flow 

pattern transition. Flow pattern was determined from the slugging frequency measured with a 
needle contact probe. The resulting flow pattern map for the seven channels is shown in figure 11 
which employs the superficial velocities Jo and JL as coordinates. Flows are classified into three 
primary patterns; bubble flow, slug flow and annular flow. The transition criteria of these flow 
patterns are described below. 

If large gas bubble is defined as such a bubble that its longitudinal dimension exceeds the 
equi-periphery diameter Do then a corresponding slug interval which is the length from the 
nose of a large gas bubble to that of the succeeding one can be obtained from the frequency and 
the velocity uc, It was found in this study that its average value decreases abruptly from infinity 
to about 10Dh in accordance with bubble to slug transition, and increases drastically from the 
order of 10Dh to infinity corresponding to transition from slug to annular flow. Based on these 
experimental findings, the criterion of bubble to slug transition is taken as the average slug 
interval to be 100Dh and that of slug to annular transition to be 1000Dh. 

From a comparison of the flow pattern boundaries in figure 11, there is little difference of the 
running among the test sections though the 7 x 20.6 mm rectangular one alone deviates some- 
what from the others. Then, it appears that channel geometry itself has no considerable 
influence on flow pattern transition in noncircular channels, while channel dimension affects it 
in particular just above and below Dh - 10 mm. 

C O N C L U S I O N S  

The following conclusions may be drawn from the results of this study on single and 
two-phase flow in noncircular channels: 

(1) The friction factor for fully developed turbulent single-phase flow has been correlated 
simply with Reynolds number by means of the turbulent geometry factor C;  A--C, Re -°25 
analogous to the Blasius formula. C, can be described empirically by [7] as a function of the 
laminar geometry factor Q of the channel considered. 
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(2) The two-phase frictional multiplier correlation proposed by Chisholm & Laird (1958) is 
also applicable to the frictional pressure drop in noncircular channels, if the relevant single- 
phase pressure drops for the both phases are determined. 

(3) The rising velocity of gas bubbles in two-phase slug flows is given by [13], uo = 
CI(jo +]L)+ uoc~ The coefficient G is found to be nearly equal to the ratio of maximum to 
mean velocity in the cross section and Uoo, the velocity in a still water column, can be 
expressed approximately as 0.35 x/(gD~). 

(4) Data of the mean void fraction agree well with [14], a = ]o/Uc,, when the mean void 
fraction is less than 0.8 and the rising velocity of gas bubble is used for u~. 

(5) Channel geometry has no remarkable influence on the flow pattern transitions both from 
bubble to slug flow and from slug to annular flow when Dh is greater than about 10 mm. 
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